Further Maths Revision Paper 2

This paper consists of 5 questions covering CP1, CP2, FP1 and FM1. (AS Further Maths: Q4 and 5)

1

Use L'Hospital's Rule to calculate the

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

2

Draw the polar curve

$$
r^{2} \sin 2 \theta=2 c^{2}
$$

marking key points on your sketch.

3

(a) Prove that

$$
\frac{(2 n+1)(2 n+3)}{(n+1)(n+2)}-\frac{(2 n-1)(2 n+1)}{(n(n+1)}=\frac{2(2 n+1)}{n(n+1)(n+2)}
$$

(b) Hence or otherwise show that the sum of the first n terms of the series

$$
\frac{3}{1 \times 2 \times 3}+\frac{5}{2 \times 3 \times 4}+\cdots
$$

is

$$
\frac{n(5 n+7)}{4(n+1)(n+2)}
$$

Use the midpoint formula wth $h=0.1$ to estimate the value at $x=0.2$ of the particular solution to

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{x}+y}{y+x^{2}} a t(0,1)
$$

correct to 4 decimal places.
Euler's iterative formula

$$
y_{n+1} \approx y_{n}+h\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{n}
$$

Midpoint iterative formula

$$
y_{n+1} \approx y_{n-1}+2 h\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{n}
$$

5

(a) Show that $P(5,5,3)$ and $Q(-1,2,-3)$ are on opposite sides of the plane

$$
\Pi_{1}: 2 x-3 y+6 z=0
$$

(b) Find where $P Q$ meets the plane Π_{1}.
(c) Find the equation of the plane which contains the line PQ and is perpendicular to Π_{1}

